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We investigate the brightness distribution in and around outdoor shadows (for a variety of sky condi-
tions) using modeling and field measurements. The dominant factor influencing the brightness of a
shadow is the solid angle subtended by the object blocking the Sun. Occulters at the zenith that subtend
a small solid angle cast shadows that are bright and possess a nearly uniform brightness across their
extent. Shadows from large occulters are much darker and their brightness varies considerably, being
darkest at their centers. For nonzenith occulters, the proximal (nearest the Sun) side of the shadow is
darker than the distal side and the shadow will be darkest beneath the center of the occulter. Occulters
(e.g., tree or cloud) influence the brightness of sunlit portions near the shadow because they block part of
the sky and reflect light into the shadow. The aureole has a significant influence on the brightness of
shadow edges. Semi-analytic formulations for the brightness in shadows are presented, and analytic
expressions in wells and tunnels are derived. © 2015 Optical Society of America
OCIS codes: (080.0080) Geometric optics; (010.1290) Atmospheric optics; (010.7295) Visibility and

imaging; (330.0330) Vision, color, and visual optics.
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1. Introduction

Shadows are so familiar that their explanationmight
seem obvious, perhaps trivial. But this is not the
case. For example, Fig. 1 shows a number of interest-
ing shadow effects from a coffee mug casting its
shadow on white paper. The shadow is blue because
in the absence of direct sunlight only blue skylight is
illuminating it. The shadow is darker near the mug
and becomes brighter away from it. An observer
standing on the paper near the mug would see the
mug subtending a large solid angle which blocks
much of the skylight. Themug’s solid angle decreases
as the observer moves away from it. As a result, the
mug blocks less skylight (causing the shadow to grow
brighter). Perhaps surprisingly, the presence of the
mug also affects the sunlit portion of the paper by
blocking part of the sky. As the observer moves away
from the mug’s shadow, the sunlit portions brighten.
Thus, from a simple observation we discover a
fundamental truth: an occulting object influences

the entire scene’s brightness, not just in its own
shadow.

Another example occurs on overcast days (Fig. 2).
With no direct sunlight but only light scattered
through clouds, the illumination source is the over-
cast itself. The shadow is diffuse but still present.
Since the light is coming from all directions, the
shadow is also cast in all directions. These shadows
are darkest at their centers where the occulter sub-
tends the largest solid angle and consequently blocks
the largest amount of the skylight.

Shadows display wide variations due to the illumi-
nation circumstances: clear skies, partly cloudy and
overcast skies, nearby landscape objects that can
scatter light into shadows, the reflectivity of the sur-
face on which they fall, size of the occulting object rel-
ative to its height above ground height, and so on.

Shadows are fundamentally volumetric phenom-
ena; i.e., they exist in three dimensions, not just as
a dark spot on the ground. Artists and computer
scene generators classify them into three categories
[1]: form, space, and cast. In Fig. 1, form shadows are
on the body casting the shadow (in this case, the
side of the mug without direct solar illumination)
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and facing the cast shadow. It is hard to see in Fig. 1
because the mug is so dark. The space shadow occu-
pies the volume of shadowed space between the mug
and the paper. It is invisible here because there is
nothing (like smoke or haze) to scatter light from

the volume, as there is in the case of crepuscular rays
or an eclipsed moon. The cast shadow is seen on the
ground and is the shadow we most often think of.
Note that an occulter blocks skylight, but it can also
add illumination to the shadow (Fig. 3). A good exam-
ple is a cloud whose form shadow is never black
because light emerges from the cloud’s shaded under-
side. Another example is a mountain. Its form
shadow will reflect skylight into the cast shadow.
Scene modelers are well aware of such effects [2–4].

Shadows have been previously studied for a wide
variety of applications [5–7]. Yet few if any investiga-
tors have reported or clearly stated some of the most
fundamental aspects of shadows. In this paper, we
hope to provide a foundation for understanding shad-
ows by theoretically deriving some of their basic
properties and demonstrating them with measure-
ments, primarily in the outdoor landscape. We have
analyzed shadows using geometrical optics and real-
istic illumination sources. Only umbral shadows
were considered, requiring that all occulters subtend
solid angles much greater than that of the Sun
(∼6 × 10−5 str). We treat the Sun as a point source
and ignore diffraction (and solar limb darkening).
We will also ignore the intrinsic color of the sky and
also the properties of the surface upon which the
shadow is cast which we will assume to be uniform
and neutral in color.

2. Theory: Shadows from Occulters at the Zenith

A. Brightness at the Center of a Shadow

We begin with the simplest case (Fig. 4): a shadow
cast on the ground from an occulting object at the
zenith that blocks the Sun, also at the zenith. The
ideal occulter would be an infinitely thin, circular,
horizontally oriented, opaque black disk. Such a disk
would not reflect light back to the atmosphere to be
further scattered, nor would it reflect ground light
from its underside (back into the shadow).

Let the occulter have a diameter w and a height h
above the ground. At the center of the shadow on the
ground, the occulter blocks a solid angle of

Ω � 2π�1 − cos θ0�; (1)

Fig. 1. RGB scans through the photograph along the horizontal
line indicated. With increasing distance from the mug the shadow
grows brighter because the mug is blocking less skylight; i.e., the
mug is subtending a smaller solid angle. The effect is also evident
in the sunlit portion of the scene. Note that the shadow was also
blue because only blue sky light could reach it. The Sun was rel-
atively low and dim, so the sunlit white paper was similarly blue.
Digital single lens reflex camera was used to take the photograph.
RGB scanswere retrieved using Igor Pro software. Scans were box-
car averaged by three pixels to reduce noise.

Fig. 2. (a) On clear days the shadow has sharp edges (penumbral
effects ignored). (b) On overcast days the shadow has no edges be-
cause the illumination source (the clouds) covers the entire
celestial hemisphere.

Fig. 3. There are three kinds of shadows: (a) body shadow on the
shady side of the occulting object, (b) space shadow that is nor-
mally invisible, and (c) the cast shadow on the ground, the one
we usually think of as the shadow. Light can reach the cast shadow
from the sky and the body shadow.
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where the zenith angle of the occulter’s edge θ0 is
given by

θ0 � tan−1�w∕2h�: (2)

The brightness at the center of the shadow IS can
be calculated by integrating over the entire 2π sr of
sky light IA, then subtracting from it the contribution
from the sky blocked by the occulter IB, with a solid
angle Ω. The assumption here is that the brightness
of the shadow is proportional to the amount of
skylight reaching it. We shall initially adopt a
normalized, dimensionless sky radiance BA that is
proportional to air mass and is of the form

BA�θ� � sec θ; (3)

which gives a unit brightness at the zenith and
is a good approximation for a plane-parallel, optically
thin atmosphere until we approach roughly θ > 75°.
Equation (3) implicitly assumes that the atmosphere
is composed of particles that scatter light isotropi-
cally. At any given zenith distance, light reaching
the surface will be diluted (per unit area on the
ground) by a factor of cos θ. Taking these terms into
account, the differential brightness contribution of
the sky to the shadow is

dIA � sec θ 2π sin θdθ cos θ � 2π sin θdθ: (4)

Here, sec θ cancels cos θ, and we revert to a situation
where calculating irradiance has simply become one
of computing solid angles. Integrating θ from 0 to
π∕2, we find

IA � 2π
Z

π∕2

0
sin θdθ � 2π; (5)

which is a convenient value for the relative whole sky
irradiance (in steradians) that is falling on the center
of the shadow. From this, we must subtract IB (radi-
ance from the sky around the zenith, blocked by the
occulter). It is the same functional form as Eq. (5),
except the integration limits are 0 to θ0,

IB � 2π
Z

θ0

0
sin θdθ � 2π�1 − cos θ0�; (6)

which is Eq. (1). By allowing θ0 to go to zero, we are
implicitly ignoring direct sunlight and subtracting
off only that tiny portion of skylight near the zenith.
In reality, θ0 can never go to zero because when θ0 <
0.25° (the Sun’s angular radius) the Sun would be ex-
posed leading to a penumbral shadow.

The light reaching the center of the shadow IS is
the difference between Eqs. (5) and

IS � IA − IB � 2π − 2π�1 − cos θ0� � 2π cos θ0: (7)

As expected, when θ0 goes to zero, IS � 2π. In the
limit of very large occulters, e.g., one sitting on the
ground, θ0 goes to π∕2 and IS becomes zero, a com-
pletely dark shadow. Subtracting the two portions
of the illumination from one another is like the
approach taken by others [2].

We can do a similar calculation for shadows from
an overcast sky by replacing sec θ with a constant
brightness BC. While not actually true, this simplify-
ing assumption represents the starting point for
more realistic overcast radiances (discussed in a sub-
sequent paragraph) and allows an analytic solution
to be obtained. Now the zenith integrals become

dIA � BC 2π sin θ cos θdθ; (8)

IA � BC 2π
Z

π∕2

0
sin θ cos θdθ � πBc � π; (9)

IB � πBC sin2 θ0; (10)

and so
IS � IA − IB � πBC cos2 θ0: (11)

Figure 5 shows the brightness at the center of the
shadow for a clear and constant overcast sky [Eqs. (7)
and (11)], normalized to unity (at θ0 � 0) for compari-
son. Both curves are unity at θ0 � 0° and go to zero at
θ0 � 90°. Shadows from a clear sky are relatively
brighter than those from a constant overcast for
every occulter size. This is because an overcast is
brighter at the zenith (relative to the horizon) than
is a clear sky, and it is the zenith portion IB that is
subtracted from IA. The greatest relative difference
in brightness the two curves is at θ0 � 60°, where
the clear sky shadow is twice as bright as the con-
stant overcast shadow.

To use more realistic skylight sources, we now in-
clude the differential scattering cross section for
Rayleigh scattering in the clear sky calculations.
For the clear sky, BA�θ� becomes

BA�θ� � �1� cos2 θ� sec θ: (12)

Then, as before,

Fig. 4. Geometry of a shadow cast by the zenith sun. The nonre-
flective opaque circular occulter (with diameter w and height h
above the ground) casts a circular shadow. Seen from the ground,
the occulter subtends a solid angle Ω with angular radius θ0.
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dIA � 2π�1� cos2 θ� sec θ sin θ cos θdθ; (13)

IA � 2π
Z

π∕2

0
sin θdθ� 2π

Z
π∕2

0
sin θ cos2 θdθ � 8π∕3:

(14)

The skylight blocked by the occulter is

IB � 2π
Z

θ0

0
sin θdθ� 2π

Z
θ0

0
sin θ cos2 θdθ; (15)

� 2π�1 − cos θ0� � 2π�1 − cos3 θ0�∕3; (16)

and therefore the shadow radiance for a Rayleigh-
secant clear sky is

IS � IA − IB

� 8π∕3–2π�1 − cos θ0� − 2π�1 − cos3 θ0�∕3: (17)

For the overcast, we will use the brightness profiles
of [8] for unbroken stratocumulus, shown in Fig. 6.
Although brightness distributions will vary from
one overcast to another [9,10], we shall take those
of [8] to be representative. They can be tolerably
approximated by the numerical relation

BC � 24.16–0.001724θ2 Wm−2 sr−1; (18)

where θ is in degrees from the zenith, also shown in
Fig. 6. The constant 0.001724 has units of
Wm−2 sr−1 �deg2�−1.

Normalizing BC and converting to radians, we find

BC � 1 − 0.23427θ2 � 1 − Kθ2; (19)

where K � 0.23427. The full overcast sky component
is then

dIA � �1 − Kθ2�2π sin θ cos θdθ

� 2π�sin θ cos θdθ − Kθ2 sin θ cos θ�dθ; (20)

which integrates to

IA � π − 2πK �1∕4θ sin 2θ − 1∕8�2θ2 − 1� cos 2θ�jπ∕20

� ∼2.6016: (21)

For the occulted part of the sky reaching from the
zenith to θ0,

IB � 2π
Z

θ0

0
sin θ cos θdθ − 2πK

Z
θ0

0
θ2 sin θ cos θdθ

� 2π�1∕2 − 1∕2 cos θ20 − 1∕4Kθ0 sin�2θ0�
� 1∕4Kθ20 cos�2θ0�−1∕8K cos�2θ0� �K∕8�; (22)

Fig. 5. Normalized comparison of the brightness of the center of
the shadow (for a clear sky and overcast sky) as a function of an-
gular radius of the occulter as would be measured from the ground
[Eqs. (7) and (11)].

Fig. 6. Approximate fit (dotted line) to two overcasts measured
by [8].
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and the final expression for IS for the shadows in [8]
is then

IS � IA − IB � ∼2.6016 − 2π�1∕2 − 1∕2 cos θ20

− 1∕4Kθ0 sin�2θ0�
�1∕4Kθ20 cos�2θ0� − 1∕8K cos�2θ0� �K∕8�: (23)

Figure 7 shows the normalized shadow bright-
nesses for the Rayleigh-secant shadows [Eq. (17)],
and the shadows in [8] [Eq. (23)], analogous to Fig. 5.
As stated previously, the overcast shadow is fainter
than the clear sky shadow, for the same reasons as
explained previously for Fig. 5. Although Figs. 5 and
7 appear identical at first glance, there are subtle
differences. The similarity, however, suggests that in-
cluding the Rayleigh scattering term [Eq. (12)] and
the overcasts of [8] [Eq. (18)] is little better than
using BA�θ� � sec θ for the sky [Eq. (3)] and BC�θ� �
constant. It further suggests that the actual distribu-
tion of skylight is less important than the solid angle
subtended by the occulter.

B. Brightness Distribution inside a Shadow

The previous calculations showed the brightness at
the center of the shadow, without regard to the dis-
tribution of light within the shadow. To compute the
distribution, a number of factors must be considered
(all relating to the solid angle of the occulter), as
seen from both inside and outside the shadow.
Figures 8–11 offer some insight into the situation.
The sketches are in two dimensions, although the
true situation is in three dimensions.

Due to simple projection, the solid angle subtended
by the occulter decreases with horizontal distance
from the occulter’s center [alternatively it decreases
with increasing occulter zenith angle (Fig. 8)]. When
the Sun is at the zenith, the shadow’s brightness is
symmetric about its center, but for a nonzenith sun
the brightness is asymmetric (Fig. 9). Specifically,
the side of the shadow closest to the Sun (proximal
side) is darker than the side away from the Sun (dis-
tal side; Fig. 10). This is true because the solid angle
Ωp subtended by the occulter as seen from the proxi-
mal side is larger that it is from the distal side Ωd. As
a consequence, an observer on the proximal side of
the shadow will receive less skylight (Fig. 10). As
the occulter’s solid angle varies across the shadow,
so too does the corresponding amount of skylight that
must be subtracted from the full sky (Fig. 11). The
skylight distribution varies with elevation, further
complicating the calculation. As it happens, calculat-
ing the solid angle subtended by a circular disk
viewed obliquely is difficult if not impossible to do
analytically [11–13]. While an arbitrary orthographic
projection of a circular disk is an ellipse, the disk’s
projection is not the relevant quantity, but rather
the solid angle it subtends as seen by an observer
on the ground. For all these reasons, a complete com-
putation of light distribution within a shadow is

Fig. 7. Normalized comparison of the brightness of the center of
the shadow for more realistic clear and overcast skies as a function
of angular radius of the occulter [Eqs. (17) and (23)].

Fig. 8. Importance of the solid angle Ω of the occulter. The solid
angle subtended by the occulter decreases with increasing
distance from the center of the shadow. The gray shade of each
triangle indicates the relative brightness of the shadow due to
sky light.

Fig. 9. A shadow cast by circular disk by a zenith sun is circular
and symmetric about its center. It is also darkest at its center. A
shadow cast by a nonzenith sun is brighter on its distal side than
its proximal side.
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beyond easy reach. Therefore, we will numerically
calculate the distribution using approximations.

To compute the solid angle Ω of the occulter from
anywhere within the shadow, we approximated the
disk as a grid of small unit squares (Fig. 12). The
solid angle of each unit square was calculated by as-
suming that all parts of it were the same distance
from the observer. Then, the individual solid angles
were summed to get the total solid angle subtended
by the occulter. Such calculations were done for a va-
riety of observer locations and occulter heights.

Knowing Ω, however, does tell us the brightness
across the shadow. We can, however, get a sense of
the brightness by simply calculating the quantity F,

F � 2π − Ω; (24)

i.e., simply subtracting Ω from 2π, 2π being the
brightness of the full sky [Eq. (5)]. Doing so makes
the simplifying assumption that the sky is uniformly
bright at all elevations. F is shown in Fig. 13 and cap-
tures many properties shown in Fig. 1.

The darkest shadows are from largest (lowest)
occulters, i.e., those that subtend the largest solid an-
gles and thus block the most light. As Ω decreases,

the shadow brightens. All shadows are darkest at
their centers and gradually brighten toward the
edge. There are two limiting cases: (1) an occulter
on the ground (h � 0, θ0 � π∕2), whose shadow is
completely and uniformly dark with a sharp edge;
and (2) a very high occulter (h � ∞, Ω � 0), whose
shadow is of uniform brightness (2π) with no edge
brightening. At all other values of h∕w, the shadow
is darkest at its center and brightens toward the
edge, the effect being most pronounced when h∕w
is small.

Figure 13 also shows that the occulter influences
the brightness outside the shadow (x > 2), because
it still blocks part of the sky. As a result, even in the
sunlit portions of the landscape, a nearby occulter de-
creases the total amount of light reaching the ground
compared to what would otherwise reach the ground.
The effect is most prominent for low occulters. The
findings in Fig. 13 reinforce the observational result
discussed in regard to Fig. 1. They also show that
occulter solid angle is the most important factor

Fig. 10. The proximal edge is exposed to less of the sky than the
distal side.

Fig. 11. The geometry of the nonzenith shadow is difficult to com-
pute because of the variation of sky brightness and solid angle sub-
tended from various locations on the ground.

Fig. 12. Numerical approach to calculating the solid angle of the
occulter. The circular disk was replaced by many smaller square
tiles, each of whose solid angle was computed, then summed to
get the approximate total solid angle Ω of the occulting disk.

Fig. 13. Brightness proxy F � 2π −Ω for a circular black occulat-
ing disk as a function of distance from the center of the shadow.
Note that F reveals the evidence of the blocked sky in the sunlit
proportion of the scene adjacent to the shadow, i.e., F does not go to
2π for x > 2.
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controlling shadow brightness. Thus, F becomes a
proxy for brightness.

C. Brightness in Wells and Tunnels

Suppose that the occulting object is not an isolated
object seen against the sky as previously discussed,
but rather one that surrounds the observer and sub-
tends almost 4π steradians. Such is the situation in
wells and tunnels (Fig. 14). In this case, w is the dia-
meter of the well and h is the depth of the observer.
By assuming that the brightness is proportional to
the solid angle Ω of the opening as seen from within
the well, we eliminate the need for any knowledge
about the illumination source.

From Eqs. (1) and (2),

Ω�2π�1−cos θ0��2π�1−cos�tan−1�w∕2h���: (25)

With two openings, a tunnel will obviously be twice
as bright as a well, so we will just calculate the
brightness as a function of depth in a well. We also
assume that the walls of the well are nonreflective.

Figure 15 shows the brightness (solid angle) versus
depth in a circular well whose diameter is unity. The
maximum brightness occurs at h � 0, where Ω � 2π
(again in units of steradians). Brightness drops off
rapidly with depth, reaching about 10% of full bright-
ness when h � w. After that, it asymptotically ap-
proaches total darkness as h → ∞. A log − log plot
(Fig. 15, inset) reveals that the brightness drops
rapidly after the depth exceeds w. Note that the
asymptotic slope of log Ω∕ log h is −2, which can be
easily verified by expandingEq. (25) in a power series.

3. Measurements of Shadows

A. High Sun

To measure the brightness distribution within shad-
ows, we constructed a device mimicking the geom-
etry of Fig. 4: a 30 cm diameter flat, black circular

disk, suspended at various heights above a horizon-
tal flat surface (Fig. 16). The location was on a ridge
in the Santa Monica Mountains near Los Angeles,
with a clear view of the entire sky. There was little in
the way of trees or other objects that could reflect
sunlight into the shadow, and the sky was visible
down to an altitude of 3° or less in any direction.
Measurements were made on 26 June 2013 when
the Sun’s altitude was 77°, near but not at the zenith.
Photographs were taken of the disk’s shadow for
various heights and scanned in the same way as
shown in Fig. 1. We included calibration cards in
each photo but did not convert the pixel values to
true relative intensity. Red-green-blue (RGB) values
are good proxies for relative intensities because tests
of the camera showed a monotonic relation between
RGB and relative brightness.

Figure 17 shows three line scans through shadows
where the disk height was varied. Owing to slightly
different camera exposures, the three plots have
been scaled by a small amount to match the upper
and lower portions of the scans. This aids in compari-
son of shape but hides another fundamental fact
about shadows mentioned previously: the larger
the angle subtended by the occulter, the darker the
shadow, as Fig. 13 clearly shows. As previously, blue
pixels are the brightest and red ones are the faintest.

The line scans show the brightness distribution
across the shadow for three values of h∕w. These
qualitatively agree with the predictions of Section 2
(Fig. 13): occulters closer to the ground produce
greater brightness variations across the shadow. Two
other aspects of Fig. 17 are worth noting. The influ-
ence of the occulter in the sunlit portion is most evi-
dent when the occulter is low (h∕w � 0.17), where
the brightness increases away from the shadow.
The steepness of the shadow/sunlight boundary de-
creases as h∕w increases. This is the result of a wider
penumbra.Fig. 14. Optical geometry of a well.

Fig. 15. Brightness inside a well as a function of observer depth.
Inset, logarithmic plot.

B160 APPLIED OPTICS / Vol. 54, No. 4 / 1 February 2015



B. Low Sun

When the Sun is low and shadows long, shadows are
offset horizontally away from the Sun. The shifted
placement (relative to the center of the occulter)
results in an asymmetric brightness distribution
across the shadow. Figure 18 shows a photograph
of such a clear-sky situation, with a 12 cm diameter
black, circular disk, held 2 cm above a diffuse white
horizontal surface. The Sun was at an elevation was
31° in the northwestern sky. Although illumination
conditions were not ideal because trees and buildings
blocked some of the eastern sky, the effect shown in
Figs. 9 and 10 is nonetheless obvious: the proximal
edge is darker than the distal edge.

4. Reconciling Theory with Measurements

There are at least two aspects of the observations in
Fig. 17 that Fig. 13 does not reproduce. (1) Calcula-
tions show F (Fig. 13) to be near zero at the center of
shadows for low occulters, yet measurements show
that the centers of shadows have significant bright-
ness. (2) The edges of shadows in Fig. 17 are quite

sharp, while those in Fig. 13 are smooth and continu-
ous across the shadow/sunlit boundary. Both discrep-
ancies are a consequence of using F � 2π −Ω as a
substitute for brightness. F was derived from solid
angles, not from actual calculation of brightness.
To bring theory closer to measurement, we simply
need to add a constant offset to F to account for sky-
light reaching the shadow. This would not, however,
correct the disparity of sharp edges, because the solid
angles are continuous across the shadow/sunlit
boundary.

Theory also predicts that the darkest part of the
shadow in Fig. 18 should be directly beneath the
center of the occulter (as it is in Fig. 17), but this
is not the case for the observations shown in Fig. 18.
The darkest part is to the right (more distal) of the
center of the disk. We believe that this is because the
sky is brighter in the direction of the Sun (due to for-
ward scattering by aerosols) than it is away from it.
We believe that it is the enhanced brightness of the
sky (near the low sun) that raises the brightness of
the proximal part of the shadow.

Fig. 16. Left, a shadowmaking apparatus was constructed to mimic the conditions in Fig. 4. A black circular black disk was suspended at
various heights from a slender pole on a highmountain ridge on a clear day when the Sun was high in the sky, although not precisely at the
zenith. Right, shadows were photographed and scanned (see Fig. 17).

Fig. 17. Three RGB scans through three shadows cast by the occulter at various heights. The Sunwas near the zenith. The shadow is blue
and darkest at its center, i.e., directly beneath the center of the occulter. For a low occulter (h∕w � 0.17, left scan) the central shadow is
quite dark, while for a high occulter (h∕w � 6.5, right scan) the shadow is nearly the same brightness throughout. These results confirm
the predictions made in Section 2.B.
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5. Influence of the Aureole

The aureole is a bright glow around the Sun, caused
by forward scattering of large aerosol particles
(10–1000 μm), usually dust, thin clouds, or pollen.
Near sea level or in the planetary boundary layer, the
aureole is always present. Even on high mountains,
it is rarely absent (Fig. 19). The aureole therefore
brightens the periphery of shadows in proportion
to its brightness and radial extent. This adds a term
to Eq. (3), representing a localized brightness en-
hancement. Indeed, having been taken in the plan-
etary boundary layer, Figs. 1, 16, and 18 must
have an aureole component.

The importance of aureoles to shadow illumination
is easily argued. Assume the sky subtends 2π sr and
is of unit brightness. A 5° diameter aureole subtends
about 0.006 sr, so on average would only have to be
2π∕0.006 ≈ 1000 times as bright as a Rayleigh
atmosphere to significantly affect the shadow’s

periphery. Aureoles can be much brighter than this,
as Fig. 20 shows.

Two brightness profiles of the aureole were mea-
sured, on a clear day and a hazy day, in [14] (Fig. 20).
On the clear day, the aureole (near 0.4° from solar
center) was about 1000 times fainter than the disk
of the Sun, but on the hazy day (when the Sun’s
brightness was attenuated by about a factor of 2),
the aureole was much brighter, only about 100 times
fainter than the solar disk.

The aureole modifies the sky’s brightness distribu-
tion and might render the sec θ approximation
[Eq. (3)] locally incomplete. However, for an optically
thin aerosol layer, we suppose that its contribution
can be modeled by adding an additional term to
Eq. (3) to represent the aureole’s glow.

6. Shadows from Clouds with Optically Thin Edges

A fascinating suggestion was made in [15]. By
modeling a scene containing clouds with optically
thin edges, they predicted that the periphery of cloud
shadows should have bright rings around them
(Fig. 21). Their argument was as follows. An optically
thick cloud will cast a dark shadow. At its optically
thin edges, however, forward scattering by water
droplets will distribute sunlight across the geometri-
cal shadow boundary. The main effect is to add addi-
tional light to the shadow edge (Fig. 22). Therefore,
there should be a thin, bright band of light around
the cloud’s shadow. More recently, [16] has strength-
ened the case for “enhanced illumination” near cloud
shadow boundaries.

7. Summary and Conclusions

We have investigated shadows cast by a circular disk
both theoretically and experimentally and found
them to be in qualitative (and in some cases quanti-
tative) agreement. We began by making a simple but
surprising observation (Fig. 1) that showed that the
presence of an occulting object affects the brightness
in the sun-illuminated portions of the ground. We
computed the brightness at the center of the shadow
as a function of the occulter’s apparent size on the
sky, and then showed how the brightness varies
across it. The brightness in wells as a function f
depth was also calculated. We then made measure-
ments of actual shadows and found them to be in
agreement with theory. For shadows cast by an off-
zenith occulter, the proximal side of the shadow is

Fig. 18. RGB scan through a shadow cast when the Sun was at an
altitude of 30°. Note that the proximal side of the shadow (left) is
darker than the distal side (right). Sky conditions were not ideal.
There were some thin clouds to the west (left), and much of the
horizon to the east (right) was blocked by trees and buildings.
As a result, the darkest part of the shadow is not precisely under
the center of the occulter, as would be the case for a clear, unob-
structed sky as indicated in Fig. 9.

Fig. 19. The bright glow around the Sun (blocked by the street light) is the aureole and is almost always present due to forward scattering
by particulates (left). On one exceptionally clear day on Mauna Kea, the aureole was undetectable (right).
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darker than the distal side. The influence of the aure-
ole and how it affects the periphery of the shadow
were also discussed.

At this point, one might say, “Well, of course shad-
ows are darkest at their centers,” or other such
sentiments, as though nothing new was found (or
the results were common sense and unremarkable).
Perhaps, having now explained the properties of
shadows, the results do indeed seem rather unsur-
prising. But Galileo knew that new findings often
seem obvious in retrospect:

“All truths are easy to understand once they are dis-
covered; the point is to discover them.”

This quote has been widely attributed to Galileo, but
it is actually a paraphrasing of an exchange between
two interlocutors in [17]:

Salviati: “Now you see how easy it is to understand.”

Sagrego: “So are all truths, once they are discovered.
The point is in being able to discover them.” [18].

The author would like to thank James Lock for
reviewing the theoretical analysis and David Dear-
born for performing the calculation in Fig. 13. We
appreciate many useful discussions with Bill Living-
ston about shadows. Many substantive suggestions
were made by two anonymous reviewers, and we ac-
knowledge with gratitude their contributions to the
paper.
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