FIG. 14. Crystal with truncated
pyramidal faces.

DP1P4, respectively. 'The normal plane passes through the
principal crystal axis. To give rise to a point of contact, the
sun must lie in the normal plane and the angle of incidence of
the light at the face of entry must correspond to minimum
deviation. When the crystal axis is vertical, so also will be the
normal plane, and the points of contact, or of nearest ap-
proach, will lie vertically above or below the sun. When the
crystal axis is horizontal and the solar elevation is low, the
position of the normal plane that must contain the sun for
minimum deviation will lie near the horizontal. The points
of contact will then lie near the 9 o’clock and 3 o’clock posi-
tions.

The two possibilities may now be compared with the pho-
tographs taken by Professor Scorer of the 1974 display (see
Plate 100). Not only are they of excellent quality but they are
very probably unique in providing a photographic record of
halos of unusual radii. These photographs were measured
very carefully by the late E. C. W. Goldie, and his results were
presented by him in a joint paper with G. T. Meaden and R.
White.4 The article has incidentally a useful list of references
to other papers on solar halos of unusual radii. Figure 13
shows Goldie’s interpretations of Scorer’s photographs. The
present writer also examined the photographs soon after the
event and would confirm Goldie’s findings.

Scorer’s photograph and Fig. 13 clearly show that associated
arcs occur near halos 1 and 3 near the 12 o’clock position.
Associated arcs cannot be clearly discerned in connection with
any of the other halos, although there is considerable general
illumination in the regions where they would occur.

These observations would appear to indicate quite un-
equivocally that the phenomena arose from crystals floating
with their principal axes vertical. It would seem unlikely that
a crystal shaped like the drawing in Fig. 1 would descend
through the atmosphere in this attitude. However, the py-
ramidal ends to the crystal were doubtless truncated and,
overall, the crystal approached more nearly the plate form
than the column (Fig. 14).

This suggestion is supported by two further considerations.
The first is that a weak sun pillar is clearly discernible, and
the flat truncated ends would give rise to this. The second
is that it is rather surprising that no very brilliant parhelion
is observable. When a parhelion is produced by thin plates,
the light would have to be “piped” across the crystal by means
of total reflections at the tap and bottom faces. The presence
of the pyramidal faces would increase the distance between
the top and bottom surfaces and render them less effective in
getting the light across.

Although we have here such clear evidence that the crystal
axes of the crystals were vertical, it must not be concluded that
the other alternative, horizontal principal axes, never occurs.
Crystals of the shape in Fig. 1 could well occur on other occa-
sions and the associated arcs corresponding to this attitude
of descent be produced. Only the passage of time can lead to
a more definite conclusion on this point, as adequately re-
corded observations build up. The position of the arcs asso-
ciated with the halos of Van Buijsen and Burney, with the sun
low in the sky, would appear to be critical in deciding the or-
igin of the halos in further observations.

IW. J. Humphreys, Physics of the Air (McGraw-Hill, New York,
1929), pp. 534-536.

2Louis Besson, “Concerning Halos of Unusual Radii,” Mon. Weather
Rev., May, 254-255 (1923).

3R. A. R. Tricker, Introduction to Meteorological Optics (Ameri-
can-Elsevier, New York, 1970), pp. 76-78.

4E. C. W. Goldie, G. T. Meaden, and R. White, “The concentric halo
display of 14th April 1974,” Weather 31, No. 9, 304-312 (1976).

Polarization models of halo phenomena. I. The parhelic circle
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An optical model of the parhelic circle is computed which includes the Stokes parameters of
polarization. The model is based on one of two closely related mechanisms in crystals which are known
to exist in cirrus clouds. An analysis of the circumstances of occurrence shows that one mechanism
—external reflection from the side faces of ice crystal plates with ¢ axes vertical—probably generates

most parhelic circles.

INTRODUCTION

The parhelic circle is an ice halo formed in cirrus clouds.12
It is colorless, passes through the sun and encircles the sky
parallel to the horizon at the solar elevation. There are sev-
eral mechanisms, both reflective and refractive, that could
produce such a halo, though no single mechanism has yet been
identified. Perhaps this is because any number of them may
act together depending on the forms of ice present in the
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cloud. In this study we analyze the parhelic circle and argue
that either of two closely related mechanisms can reproduce
the observations.

1. OBSERVATIONAL CONSIDERATIONS

The parhelic circle (PHC) has several characteristics upon
which a model can be constructed. First, it occurs at all azi-
muths relative to the sun, suggesting that an odd number of
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FIG. 1. Two mechanisms that

form the parhelic circle. (a)Ex-
a ternal reflection from the side
faces of plates oriented with their
c axes vertical. (b) External re-
flection from the basal faces of
pencil crystals. In each case the
orientation about the ¢ axis is ar-
bitrary.

reflections is involved. An even number of reflections within
the same crystal would result in an invariant deviation, per-
haps as with the paranthelia. Another property of the PHC
is its lack of color, again suggesting a nondispersive mechanism
such as reflection, though we cannot rule out refractive dis-
persion parallel to the horizon, which would not be observed
due to overlap of adjacent parts of the halo. The third
property of the PHC that must be explained is its occurrence
at the solar elevation.

Il. MODEL

The simplest mechanism that can produce the parhelic
circle is external reflection from vertical faces. Two known
crystals have the necessary faces and they are indistinguish-
able from one another from the standpoint of the PHC. They
are the plate with c-axis vertical (side faces reflecting) and the
column with c-axis horizontal [basal face reflecting (Fig. 1)].
No further constraints on these crystals are necessary to ac-
count for any aspect of the parhelic circle. We shall investi-
gate these mechanisms as candidates for the source of the
parhelic circle.

Several other mechanisms exist that may produce the PHC.
The most likely is an odd number of internal reflections from
the side faces of crystals oriented as in Fig. 1(a), the light im-
merging and emerging through the upper and lower faces re-
spectively. Since this would cause a considerably greater
attenuation in brightness—both by reflection and by the re-
duced likelihood that the walls would be perfectly formed—it
would create a fainter parhelic circle. For these reasons this
and the other alternative mechanisms will not be discussed
further.

Ice is a uniaxial negative crystal.3 The indices of refraction
are € = 1.3104 and w = 1.309. In the case of reflection the
birefringence can be ignored and the mean value of n = 1.31
will be adopted as the index of refraction.

For a crystal with a unit area vertical face illuminated by
a unit intensity source S-(the sun), the reflected intensity is

1 = F(a,e) * sin(a/2) * cos(e), (1)

where a and e are the azimuth and elevation of the crystal as
seen by the observer O (Fig. 2). The trigonometric terms in

z FIG. 2. Coordinate system used
to analyze the parhelic circle. S:
vector from the observer Oto the
sun. P:vector from the observer
to an arbitrary point on the
parhelic circle P. e: elevation of

—< the sun and parhelic circle. a:
v azimuth of an arbitrary point on
the PHC.
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Eq. (1) represent the reduced cross section of the crystal due
to foreshortening. F(a,e) is the Fresnel term

Fla,e) =rp +rs, 2

which is identical to the first Stokes parameter, where r, and
rs are the reflectances

rp = [tan(i —i")]/[tan(i +i")]2, (3a)
rs = [sin(i — i"))2/[sin(i + i")]?, (3b)

in the plane of incidence and perpendicular to the plane of
incidence respectively; i and i’ are the angles of incidence and
refraction

i = cos™cos(e) * sin(a/2)], 4)
i’ = sin~![(sin(i)]/n. (5)

The unnormalized Stokes parameters are easily defined in
terms of r, and ry:

So=rp+rs, (6a)
Si=rp—rs (6b)
So =2 (rp * )12 cos(9), (6c)
Sg= 2= (rp xrg)/2sin(¢). (6d)

For linear polarization, the phase ¢ is 0°. The plane of inci-
dence is defined by the sun S, the observer O and the crystal
at P in the parhelic circle. In order to calculate the angle
between the plane of incidence and the vertical plane, we
define the vectors S and P

S = cos(e)i + 0] + sin(e)£, (7
P = cos(e) * cos(a)i + cos(e) = sin(a)] + sin(e)k, (8)
from which @ is readily calculated as
sin(e)[cos(a) — 1,]
{sin2(a) + sin2(e) * [cos(a) — 1]H1/2)

where 8 is measured counterclockwise from vertical if 0 < a
< 180° and clockwise if 180° < a < 360°.

f = 180° — cos™! )]

For an observer making polarization measurements, max-
imum extinction occurs when the plane of the polarizing an-
alyzer (E vector) is parallel to the plane of incidence, i.e., when
it is aligned with 6.

. . L ) . |
0O 20 40 60 80 100 120 140 160 180
a (9
FIG. 3. Total intensity / of the PHC as a function of azimuth a, with elevation
e as a parameter. Note that for low elevations (<30°) the maximum in-
tensity occurs near 22°, in the vicinity of the parhelia. .

David K. Lynch 1101



QA 390 R FIG. 4. Azimuth of the greatest
intensity of the parhelic circle as
a function of elevation.
O e 1

Two other useful quantities may be calculated. The degree
of polarization D is defined as

D =81/S(), (10)

which varies from 0 (unpolarized) to 1 (100% linearly polar-
ized). The ratio rp/rs was also calculated because it is easily
related to the observations; rp/r; is equal to the ratio I5/I;
where I, and I are the respective maximum and minimum
intensities observed through the polarization analyzer.

lll. RESULTS OF THE MODEL

The total intensity I as a function of azimuth is plotted with
the elevation as a parameter in Fig. 3. For elevations 0° and
90° the intensity is identically zero because the incident ray
is parallel to the reflecting surface and the cross section is
reduced to zero by foreshortening. The lowest solar elevation
for which the parhelic circle will occur is 0.25°—when the sun
is on the horizon. This configuration represents the minimum
elevation envelope for those curves in which the elevation is
a parameter. Most parhelic circles are reported for low solar
elevations (e < 30°) and it is clear from Fig. 3 that the maxi-
mum intensity is found near azimuth 22°, i.e., in the vicinity
of the parhelia (sundogs) when the latter occur. Such a co-
incidence would complicate a photometric analysis of either
halo. With increasing elevation, the azimuth of maximum
intensity increases. This is shown in Fig. 4.

The degree of polarization D is shown as a function of azi-
muth in Fig. 5 (for convenience, D is shown). The zeroes of
these functions correspond to those rays that strike the crystal
at the Brewster angle 52.6° [= tan~1(n)], and consequently
produce total polarization. The azimuth for which total po-
larization results is shown as a function of elevation in Fig. 6.
At e = 0 the azimuth is 74.7 [= 180° — 2 tan—1(n)] and in-
creases slowly with elevation. When the sun is higher than
the Brewster angle (where total polarization oceurs at azimuth

FIG. 5. Degree D of linear po-
larization as a function of azimuth.
When the elevation is greater than
52.6°, the Brewster angle, the
light from the PHC is never totally
polarized.

0 90 180
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180°) the azimuth of maximum polarization is always 180° but
the polarization is no longer total.

The angle # that the plane of incidence makes with the
vertical plane is plotted as a function of azimuth in Fig. 7.
When a polarizing analyzer is aligned parallel to 8 (E vector),
maximum extinction occurs. The azimuth is found from Fig.
6. When the observer rotates the polarization analyzer, the
ratio of minimum and maximum intensities can be found from
the ratio rp,/r,, which is shown in Fig. 8.

IV. DISCUSSION

This analysis has set forth the polarization properties of a
parhelic circle formed by external reflection from vertical side
faces of an ice crystal. Figure 1 shows two crystals that have
the required faces, both of which are known to exist and pro-
duce halos. Each form produces a set of halos that are clearly
distinguishable from one another. Associated with the plates
[Fig. 1(a)] are the parhelia and the pillars. Pencils [Fig. 1(b)]
cause the Parry arcs and upper tangent arc (circumscribed
halo). In this section we shall analyze the occurrence of halos
that accompany the PHC in an attempt to find out if one
crystal dominates the formation of the parhelic circle.

Parhelia of the 22° halo are very common and there is little
doubt that they are formed by transmission through vertical
side faces of plates oriented as in Fig. 1(a).? Parhelia associ-
ated with the PHC may be found in Kidson,* Findlater,? and
Jones and Wiggins.® When the incoming ray strikes the side
face, part of it is reflected and must produce a parhelic circle.
Indeed an analysis of the statistics of halo formation shows
that most parhelic circles are attended by parhelia. However,
the same analysis reveals that the PHC is far less common
than the parhelia. The relative scarcity is easily understood
in terms of brightness of the PHC. Even assuming that the
transmitted and reflected rays are approximately equal in
intensity, the PHC will be fainter than the parhelia by 10—2
— 103 owing to its larger angular size.

0 S0 180
a

FIG.7. Angle { between the vertical plane at azimuth a and the plane of
incidence for various elevations.
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FIG. 8. Ratio of minimum-to-maximum intensity as a function of azi-
muth.

Simultaneous occurrences of the parhelic circle and the
upper tangent arc without parhelia, columns, or other halos
(which indicate the presence of plates) are infrequent pre-
sumably because the pencil crystals [Fig. 1(b)] with clean basal
faces are rare, have pyramidal terminations, or are so small
that diffraction smears out the PHC. Moon? reports a PHC
with a circumscribed halo, as does Fraser.?

On at least one puzzling occasion (Maunsell?) the parhelic
circle was sighted with no other halos present. Owing to the
episodic occurrences of halos, the possibility of irregular cloud

coverage, and the realization that we do not fully understand
any halo, we mention but shall not comment further on this
remarkable observation.

V. CONCLUSIONS

The main results from this study are: (i) A polarization
model of the parhelic circle has been computed that makes a
number of very specific predictions that can be tested obser-
vationally. (ii) Most parhelic circles are probably formed by
external reflection from the side faces of plates whose ¢ axis
is vertical. These are the same crystals that produce the
common parhelia. (iii) The most sensitive test of the model
could be conducted on parhelic circles occurring at low (<30°)
elevations and would consist of maximum-to-minimum in-
tensity ratio measurements by a polarizing analyzer as a
function of azimuth.
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A computer simulation technique is used to investigate the origins of the arcs of Lowitz. The model
explored consists of light passing through a hexagonal ice plate, spinning about a major diagonal axis

that remains horizontal as the crystal falls.

INTRODUCTION

Many halos, arcs, and streaks of light in the sky result from
the refraction of sunlight by falling ice crystals. The arcs of
Lowitz are a comparatively rare effect but one whose reality
seems fairly certain. First noted by Tobias Lowitz in the fa-
mous St. Petersburg halo display of 1790,! the arcs are usually
described as being tangent to the 22° halo below the parhelic
circle and extending upward to the parhelia. Subsequent
sightings of the Lowitz arcs are not numerous, but some re-
ports do exist in the literature.2

The suggested explanation for the arcs of Lowitz involves
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light rays passing through alternate faces of right hexagonal
ice prisms in the shape of flat plates, with basal faces much
larger than the side faces. Most of the theories of these arcs
involve crystals that spin about a horizontal axis as they
fall—this horizontal axis being parallel to the basal plane of
the crystal. This spinning mode can be demonstrated easily
with a computer card if you hold the card horizontally by
grasping it between thumb and finger in the middle of a long
edge. When you release it from this position it will spin about
its long axis as it falls. The motion can be explained with
simple physical arguments.?

A feature of this spinning motion, applied to a flat plate
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